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Abstract
Calculations of one-electron spectral functions, optical conductivity and spin-
wave energy in the Holstein double-exchange model are made using the many-
body coherent potential approximation. Satisfactory agreement is obtained
with angle-resolved photoemission results on La1.2Sr1.8Mn2O7 and optical
measurements on Nd0.7Sr0.3MnO3. A pseudogap in the one-electron spectrum
at the Fermi level plays an important role in both systems, but a small-polaron
band is only predicted to exist in the La system. A rigorous upper bound on
spin-wave energies at T = 0 is derived. The spin-wave stiffness constant D
decreases with increasing electron–phonon coupling g in a similar way to the
Curie temperature TC, but D/(kBTC) increases for large g (low TC) as observed
experimentally.

1. Introduction

Recently there has been much interest in the manganite compounds R1−xAxMnO3, where R
is a rare-earth element such as La or Nd and A is a divalent metal ion such as Ca, Sr or
Pb. These compounds are generally ferromagnetic for x � 0.2–0.4 and in many of them,
near the Curie temperature TC, the electrical resistivity ρ decreases strongly in an applied
magnetic field. This effect is known as colossal magnetoresistance (CMR) and a recent review
is by Ramirez [1]. Ferromagnetism in these compounds is believed to be due to the ‘double
exchange’ (DE) mechanism, which operates when local spins are strongly coupled, by Hund’s
rule, to the spins of itinerant electrons occupying a narrow band. The local spins, of magnitude
S = 3/2, correspond to three localized Mn d electrons of t2g symmetry and the band is
derived from Mn d states of eg symmetry. The band contains n = 1 − x electrons/atom.
Millis et al [2] stressed that to describe the physics of the manganites completely it is necessary
to consider coupling of the electrons to local phonons as well as to local spins. Subsequently,
Millis et al [3] made detailed calculations of such a model, with local spins and local moments
1 Present address: Institut für Theoretische Physik, Technische Universität Graz, Graz A-8010, Austria.
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treated classically, using dynamical mean field theory (DMFT). Recently Green [4], extending
a many-body coherent potential approximation (CPA) developed by Edwards et al [5, 6] for
the pure DE model, considered a similar model with local spins and phonons treated quantum
mechanically. In the classical spin limit of the DE model the many-body CPA is equivalent
to the DMFT of Furukawa [7, 8]. Green [4] discussed a number of physical properties of
the model with electron–phonon coupling, which he called the Holstein-DE model. These
include the resistivity, and its dependence on the applied magnetic field (the CMR effect) and
on pressure, and the Curie temperature TC. In section 2 we summarize the many-body CPA
treatment of the Holstein-DE model and comment on the application of Green’s results to the
manganites. The aim of this paper is to calculate some spectral properties of the model and to
compare with experimental results. We restrict our attention to the paramagnetic state and the
ferromagnetic ground state where the many-body CPA simplifies considerably. In section 3
we calculate spectral functions which relate to the results of angle-resolved photoemission
(ARPES) and in section 4 we consider the optical conductivity. In section 5 we calculate the
spin-wave stiffness constant in the ferromagnetic state at T = 0 and show how it decreases
with increasing electron–phonon coupling in a similar way to TC. A brief summary is given
in section 6.

2. Many-body CPA for the Holstein-DE model

The Hamiltonian of the Holstein-DE model in the absence of an applied magnetic field is

H =
∑
ijσ

tij c
†
iσ cjσ − J

∑
i

Si · σi − g
∑
i

ni(b
†
i + bi) + ω

∑
i

b
†
i bi . (1)

The first two terms constitute the DE model and the first, third and fourth terms form the
Holstein model [9]. Einstein phonons on site i, with energy ω and creation operator b†

i

couple to the electron occupation number ni = ∑
σ niσ with coupling strength g. Here

niσ = c
†
iσ ciσ , where c

†
iσ creates an electron of spin σ on lattice site i. The conduction

electron spin σi = (σ x
i , σ

y

i , σ
z
i ) couples to the local spin Si with Hund exchange parameter

J > 0, and tij is the band hopping integral. The components of σi are defined as

σ +
i = σx

i + iσy

i = c
†
i↑ci↓, σ−

i = σx
i − iσy

i = c
†
i↓ci↑, σ z

i = 1
2 (ni↑ − ni↓). (2)

It is reasonable to assume that the manganites are in the DE limit J � W [10], where 2W is
the width of the itinerant electron band, and in this paper we assume J = ∞. This ensures
that there is no double occupation of a site by electrons, so that the system is a Mott insulator
for n = 1. This is not so for the two-band model used by Millis et al [2], and Held and
Vollhardt [11] have stressed the need to introduce a strong on-site Coulomb interaction in this
case. Clearly the one-band model neglects effects of eg orbital degeneracy such as a proper
treatment of the Jahn–Teller effect and the orbital ordering which occurs in the undoped system
(n = 1). However, the nature of the local phonon mode in equation (1) is not specified and
could correspond to a tetrahedral distortion of the oxygen octahedron surrounding a Mn site
as in the dynamical Jahn–Teller effect.

An important feature of the many-body CPA for the one-particle retarded Green function
is that it becomes exact in the atomic limit tij = 0. In this limit, and with J = ∞, the Green
function is given by [4]

GAL(ε) =
∞∑

r=−∞

Ir{2λ[b(ω)(b(ω) + 1)]1/2}
(2S + 1) exp{λ[2b(ω) + 1]}

× (2S + 1) n2 exp(rβω/2) + (S + 1)(1 − n) exp(−rβω/2)

ε + rω
, (3)
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where Ir is the modified Bessel function, λ = g2/ω2 and b(ω) = (exp(βω) − 1)−1 is the
Bose function with β = (kBT )

−1. In taking the limit J → ∞ we have made a shift of energy
origin ε → ε − JS/2 and the polaron binding energy λω is also absorbed in the chemical
potential. The form of the many-body CPA used by Green [4] for finite band-width becomes
particularly simple in the paramagnetic state. For a band density of states of elliptic form
De(ε) = [2/(πW 2)]

√
W 2 − ε2, the local Green function G(ε) satisfies the CPA equation

G(ε) = GAL(ε −W 2G/4). (4)

Furthermore the self-energy "(ε) is related to the local Green function by the equation [5]

"(ε) = ε −G−1 −W 2G/4. (5)

As well as the paramagnetic state, we shall also consider the case of a completely saturated
ferromagnetic state at zero temperature, with all local and itinerant spins aligned. Then the
double-exchange term in equation (1) becomes merely a constant shift in energy and the
Hamiltonian is equivalent to that of the pure Holstein model. Within the many-body CPA the
saturated state is actually the self-consistent ground state only for S = ∞ [4] and we shall
mainly consider this limit. It is found that in the DE model [5,6] neither TC nor the resistivity
vary enormously with S so that this is a reasonable approximation to the S = 3/2 Mn spin.
In the saturated ferromagnetic state at T = 0, with all n electrons per atom having ↑ spin, the
local Green function G↑(ε) again satisfies equation (4) with GAL replaced by

GAL
↑ (ε) = e−λ

{
1

ε
+

∞∑
r=1

λr

r!

(
n

ε + ωr
+

1 − n

ε − ωr

)}
. (6)

The many body CPA is successful in describing the crossover from weak electron–phonon
coupling, through intermediate coupling where small-polaron bands begin to appear, to strong
coupling where some results similar to those of standard small-polaron theory are recovered.
It therefore extends the work of Millis et al [3], where phonons are treated classically, to the
quantum small-polaron regime. One important quantum effect on a thermodynamic property
is the behaviour of TC for strong electron–phonon coupling. Millis et al [3] find TC ∼ g−4

whereas Green [4] finds TC is exponentially small for g/W � 0.35. The physics is dominated
by a very narrow polaron band. Green [4] showed how the Holstein-DE model could describe
the very different behaviour of La1−xSrxMnO3 (LSMO) and La1−xCaxMnO3 (LCMO), with
x ∼ 0.33 where TC is largest. In LSMO the resistivity ρ increases monotonically with
temperature T , with a metal–poor-metal transition at TC, whereas LCMO shows a metal–
insulator transition with ρ decreasing with T above TC. Also ρ(TC) is an order of magnitude
smaller in LSMO than in LCMO, This type of behaviour can be understood in the Holstein-DE
model by assuming that g/W is about 50% larger in LCMO than in LSMO and, within the
model, this is consistent with the considerably lower TC in LCMO. (The form of ρ(T ) in
figure 7 of [4] is indistinguishable for g/W = 0.1 from that shown for g/W = 0.01 [12] and
contrasts strongly with the curve in figure 6 for g/W = 0.16.) The calculated resistivity is
not as sensitive to applied magnetic field and pressure as observed but this discrepancy might
be removed by introducing a decrease in g/W with decreasing resistivity owing to enhanced
screening of the ionic charges [4]. A defect of the CPA treatment is its failure to describe
coherent Bloch-like states in the saturated ferromagnetic state at T = 0, leading to a spurious
residual resistivity [4].

In this paper we calculate further properties of the Holstein-DE model and confront them
with experiment.
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3. Angle-resolved photoemission spectroscopy (ARPES)

The decreasing resistivity of LCMO as the temperature increases above TC is, according to
Millis et al [3] and Green [4], due to the gradual filling of a pseudogap in the density of states.
In Green’s work the pseudogap contains well-defined polaron sub-bands in the (hypothetical)
paramagnetic state at T = 0 but above TC, with parameters appropriate to LCMO, these are
smeared out so as to resemble the classical picture of Millis et al. The pseudogap should
be observable in ARPES measurements and in optical conductivity. In an excellent paper
on ARPES for the bilayer manganite La1.2Sr1.8Mn2O7, nominally with n = 0.6, Dessau
et al [13] interpret their results very much in the spirit of the Holstein model. In this section
we present some calculations of the spectral functions in the low-temperature ferromagnetic
state to compare with this experimental data. For convenience we take n = 0.5 and also
S = J = ∞, as discussed above. The charge ordering which might occur for n = 0.5 is
suppressed since our treatment imposes spatial homogeneity. With this constraint there is
no qualitative difference between systems with n = 0.5 and with 0.3 or 0.6, for example.
We take the phonon energy to be ω/W = 0.05, the same typical value used in previous
calculations [4]. A half-width W = 1 eV is consistent with the eg bands crossing the Fermi
level in the calculations of Dessau et al [13], shown in figure 3(b). The low TC = 126 K in this
bilayer manganite is partly due to quasi-two-dimensional fluctuations, but the large resistivity
ρ � 3 m# cmat low temperatures indicates that small-polaron bands might exist even in the
ferromagnetic state. Consequently the electron–phonon coupling should be stronger than in
cubic manganites like LCMO and we choose g/W = 0.2.

The one-electron spectral function is given by

Ak(ε) = −π−1Im [ε − εk −"(ε)]−1 = −π−1"′′
ε /[(ε − εk −"′

ε)
2 + "′′

ε

2] (7)

where "′
ε , "

′′
ε are the real and imaginary parts of the self-energy "(ε) and εk is the band

energy for wavevector k. In the ferromagnetic state at T = 0 the local Green function G↑(ε)
is calculated from equation (4), with GAL defined by (6), and "(ε) follows from equation (5).
These equations assume an elliptic density of states which we here regard as an approximation
to the density of states for a band which takes the form εk = −W cosπy for k = π(1, y),
0 � y � 1. This band is shown as a full curve in figure 3(a) and crosses the Fermi level EF at
k = π(1, 1

2 ). It roughly models one of the x2 − y2 bands in figure 3(b). The calculated results
forAk are shown in figure 1. Well away from the Fermi level, a well-defined peak exists which
broadens as k approaches the Fermi momentum at y = 0.5. For larger y the weight below
the Fermi level is strongly reduced. The peaks never approach the Fermi level closely which
is an important feature of the observed spectra [13] reproduced in figure 2. The theoretical
curves in figure 1 resemble quite closely the data of figure 2(c). There is a pseudogap in
the calculated spectra extending about 0.1 eV on each side of the Fermi level. In fact this
pseudogap contains polaron bands like those shown in figure 4 of Green’s paper [4]. However,
their amplitude is too small to show up in figure 1 and in the experimental data. Nevertheless,
it is the central polaron band around the Fermi level which is responsible for the low but finite
conductivity of the system. The positions of the peaks in figure 1 are plotted in figure 3(a) and
comparison can be made with the right half of figure 3(b) reproduced from Dessau et al [13].
Filled and unfilled symbols correspond to high and low weights, respectively, obtained by
integration of the spectral function up to the Fermi energy. This comparison between theory
and experiment supports the conclusion of Dessau et al [13] that, in the manganites with a
layered structure, strong electron–phonon coupling (with the appearance of a pseudogap) is
already important below TC. This contrasts with the usual pseudocubic manganites where
the pseudogap only appears above TC. Previous work related to ours is the calculation by
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Figure 1. The spectral function Ak(ε) in the ferromagnetic state at T = 0 for J = S = ∞,
n = 0.5 and strong electron–phonon coupling g/W = 0.20, with k = π(1, y).

Figure 2. ARPES spectra of La1.2Sr1.8Mn2O7 (TC = 126 K) in the ferromagnetic state at
T = 10 K, reproduced from Dessau et al [13].

Perebeinos and Allen [14] of ARPES spectra in a two-band model of undoped LaMnO3. It
should be mentioned that Moreo et al [15] interpret the observed pseudogap not as an intrinsic
property but in terms of phase separation.
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{π 0} {π π}
-2 eV 

-1 eV

EF

(a)

(b)

Figure 3. (a) The band energy εk (——) and the position of the peak centres in figure 1.
Different symbols denote high (�) and low (�) spectral weight, obtained by integration over
the spectral function up to the Fermi energy EF. (b) Virtual crystal LSDA + U majority spin bands
for La1.2Sr1.8Mn2O7 with experimental peaks from figure 2, reproduced from [13].

4. Optical conductivity

In the local approximation of CPA or DMFT there is no vertex correction in the current–current
response function which may thus be expressed in terms of the one-particle spectral function.
In the paramagnetic state the optical conductivity is given by [5, 16]

σ(ν) = 2πe2

3Na3h̄

∑
k

v2
k

∫
dεAkσ (ε)Akσ (ε + ν)

f (ε)− f (ε + ν)

ν
, (8)

where the electron velocity vk = ∇εk, a3 is the volume of the unit cell, f (ε) = {exp[β(ε −
µ)] + 1}−1 is the Fermi function and N is the number of lattice sites. Since Ak depends on k

only through εk we may define a function φ(εk) such that φ′(εk) = Ak(ε)Ak(ε +ν), where the
dependence of φ on ε and ν has been suppressed in the notation. Hence the sum in equation (8)
may be written as∑

k

∇εk · ∇φ(εk) = −
∑

k

φ(εk)∇2εk, (9)

the last step following by Gauss’s theorem. For a simple cubic tight binding band εk =
−2t

∑
α cos kαa, with α summed over x, y, z, ∇2εk = −a2εk. Then the summand in

equation (9) is a function of εk only and equation (8) becomes

σ(ν) = 2πe2

3ah̄

∫
dε

∫
dEDc(E)Eφ(E)

f (ε)− f (ε + ν)

ν
(10)
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where Dc(ε) is the density of states for the simple cubic band. By using equation (7) in the
definition of φ′(εk), and integrating with respect to εk, we obtain

φ = 1

π2

1

(("′′
ε −"′′

ε+ν)
2 + O2)(("′′

ε + "′′
ε+ν)

2 + O2)
{"′′

ε+ν("
′′2
ε+ν −"′′

ε

2 + O2) arctanP

+"′′
ε [("′′2

ε −"′′2
ε+ν + O2) arctanQ + "′′

ε+νO logR]}, (11)

with

O = "′
ε −"′

ε+ν + ν, Q = "′
ε+ν − ν − ε + εk

"′′
ε+ν

,

P = "′
ε − ε + εk

"′′
ε

, R = "′′
ε

2 + ("′
ε − ε + εk)

2

"′′2
ε+ν + ("′

ε+ν − ν − ε + εk)
2 . (12)

Since we calculate the self-energy " using the elliptic density of states De(ε), as discussed in
section 2, it is reasonable to approximate Dc(E) in equation (10) by De(E). The integral over
E can then be carried out by parts so that, using the definition of φ′, we find

σ(ν) = 2πe2

3ah̄

∫
dε

∫
dE

W 2 − E2

3
De(E)AE(ε)AE(ε + ν)

f (ε)− f (ε + ν)

ν
(13)

with AE(ε) given by equation (7), εk being replaced by E. This is of the form given by Chung
and Freericks [17] and Chattopadhyay et al [18]. If Dc(E) in equation (10) is replaced by a
Gaussian, corresponding to a hypercubic lattice in infinite dimensions, the factor (W 2 −E2)/3
in equation (13) is replaced by a constant [5, 19]. In this paper we use equation (13) which is
consistent with our previous calculations of σ(0) [4, 5]. This expression satisfies the correct
one-band sum rule [18,20] that (2/π)

∫ ∞
0 σ(ν) dν = −Ke2/(3ah̄), where the ‘kinetic energy’

K is the thermal average per lattice site of the first term in the Hamiltonian (1).
As in section 3 we take J = S = ∞, W = 1 eV, ω = 50 meV and, as previously [4, 5],

a = 5 Å, which is slightly larger than the Mn–Mn distance in perovskite manganites. It is
again convenient to take n = 0.5 so that for J = S = ∞ the chemical potential µ is fixed at
the centre of the occupied band for all temperatures, by symmetry. In the ferromagnetic state
at T = 0 the spin-degeneracy factor 2 in equation (13) is omitted.

There have been numerous optical investigations of the manganites and the experimental
data and their interpretation are varied. For photon energy ν > 3 eV various peaks in the
optical conductivity have been assigned to interband transitions between the Hund’s rule split
bands and to charge-transfer transitions between the O 2p and the Mn eg bands. The latter
do not appear in our one-band model and our assumption of J = ∞ eliminates the upper
Hund’s rule band. Our calculated σ(ν) is therefore only non-zero in the region ν < 2.5 eV
and in general exhibits one peak. We shall focus the discussion by considering one material,
Nd0.7Sr0.3MnO3 (NSMO), which has been investigated by at least two experimental groups. In
the paramagnetic state above TC there is one feature common to data on both thin films [20,21]
and single crystals [22]. This is a broad peak at about 1.2 eV with a maximum conductivity
σmax ≈ 0.7 − 0.9 (m# cm)−1. However in NSMO films TC, as deduced from the maximum in
the resistivity ρ(T ), is larger in oxygen-annealed films (TC ≈ 230 K) than in an unannealed
sample (TC ≈ 180 K) [20, 21]. In a NSMO single crystal, on the other hand, ρ(T ) is
essentially the same (TC ≈ 200 K) in polished and annealed samples but the peak in the
polished sample is shifted to ν � 1 eV with a reduced σmax ≈ 0.3 (m# cm)−1. Since ρ(T )
and σ(ν) are quantitatively quite similar in NSMO and LCMO [20] we model NSMO with
electron–phonon coupling g/W = 0.16, the same value as proposed by Green [4] for LCMO.
The dc conductivity σ(0) at T = 10 K is also very similar in annealed NSMO and LCMO
films, 2.9 and 3.3 (m# cm)−1respectively [20]. The value for NSMO agrees well with a
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measured σ(0) of 3.2 (m# cm)−1at T = 15 K in a NSMO single crystal [22]. The above-
mentioned defect of the present CPA treatment is associated with the absence of the sharp
quasi-particle peak in the spectral function which should exist in the ferromagnetic state at
T = 0. Consequently the Drude peak in σ(ν) at low frequency is also absent.

Using the parameters discussed above the Curie temperature of the model is about 230 K [4]
and in figure 4(a) we plot the calculated optical conductivity for the ferromagnetic state atT = 0
and the paramagnetic state at T = TC and 1.5TC. The low dc conductivity of 0.11 (m# cm)−1at
T = 0 is due to the inadequate treatment of the coherent ground state in the CPA. Fortuitously
the incoherent scattering introduced by the CPA seems to model quite well the low temperature
incoherent scattering in the unannealed NSMO sample of Kaplan et al [21] which has a dc
conductivity of about 0.15 (m# cm)−1atT = 15 K. This optical data is reproduced in figure 4(b)
for comparison with the calculated results of figure 4(a). In annealed NSMO films [20], and
in single crystals [22], σ(ν) in the low-temperature ferromagnetic state continues to rise with
decreasing ν down to much lower photon energy, and σ(0) ≈ 3 (m# cm)−1.

As pointed out above, σ(ν) is much less sample dependent in the paramagnetic state
above TC and a quantitative comparison with theory is meaningful. In figure 4(a) σmax ≈ 0.15
(m# cm)−1and it must be remembered that this curve is the contribution of optical transitions
within the eg band only. To compare with the data of figure 4(b) one should subtract the
background due to other transitions which might leave an effective σmax ≈ 0.3 (m# cm)−1.
Bearing in mind the simplicity of the one-band model, this order-of-magnitude agreement
between theory and experiment is satisfactory. Our calculated results are quite similar to those
of figure 7(d) in Millis et al [3]. Clearly, for the present intermediate electron–phonon coupling
strength, their classical treatment of phonons is sufficient to obtain the essential features of
the optical conductivity. The calculated peak in σ(ν) with ν ≈ 1 eV arises from k-conserving
transitions across the type of pseudogap discussed in section 3. During the process an electron
moves from one site to a neighbouring one which was previously unoccupied. The electron
motion is accompanied by a lattice distortion, of Jahn–Teller type, which corresponds to a
displacement of the local phonon oscillator coordinate in the Holstein-DE model. When an
electron enters (leaves) a site the final displaced (undisplaced) oscillator is generally in an
excited state with typical excitation energy g2/ω. This is the atomic-limit polaron binding
energy and for the parameters assumed here is about 0.5 eV. Thus the peak in σ(ν) occurs
at about twice the polaron binding energy just as in the standard small-polaron theory [23].
However for the present intermediate electron–phonon coupling g/W = 0.16 polaron bands
near the Fermi level are largely washed out above TC [4], so standard small-polaron theory
is not expected to apply to σ(ν) for low photon energies. In fact an activation energy in
the dc conductivity of 0.25 eV, half the polaron binding energy as predicted by small-polaron
theory [23], is about a factor 4 larger than one deduced from Green’s [4] numerical calculations.
Green’s calculation of the dc resistivity above TC is in reasonable agreement with experiments
on NSMO where an activation energy of about 0.08 eV is found [24]. Lee et al [22] quote an
activation energy of about 0.15 eV and, with undue reliance on small-polaron theory, expect
to have a peak in σ(ν) at about 0.6 eV. Although there is no sign of such a peak in their data
they claim that their one broad peak near 1.2 eV should be interpreted in terms of a two-peak
structure, one near 1.5 eV and the other below 1 eV. Our interpretation of the 1.2 eV peak inσ(ν)
for T > TC is broadly in line with that of several other previous authors [3, 20, 21]. However
we stress again that, for moderate electron–phonon coupling standard small-polaron theory
does not hold at low photon energy, where only states around the Fermi level are involved, so
no simple link between peak position and the activation energy of the dc conductivity can be
made. Below TC the peak in σ(ν) shifts to lower frequency as the pseudogap rapidly fills in.
However, in our calculations this shift is held up due to spurious incoherent scattering in the
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Figure 4. (a) Calculated optical conductivity for strong electron–phonon coupling g/W = 0.16
in the ferromagnetic state at T = 0 (——), the paramagnetic state at T = TC (· · · · · ·) and the
paramagnetic state at T = 1.5TC (– – –). The plot is for J = S = ∞, n = 0.5 and a = 5Å.
(b) Optical conductivity of Nd0.7Sr0.3MnO3 at different temperatures, reproduced from Kaplan
et al [21].

ground state, which limits the low-temperature dc conductivity. The same effect actually occurs
in unannealed NSMO films (figure 4) but in annealed films and single crystals the peak shifts
almost to zero frequency [20,22]. The theoretical situation could be improved by introducing
screening effects in the electron–phonon interaction so that g/W decreases with decreasing
resistivity, as mentioned at the end of section 2. The spurious residual resistivity at T = 0
drops from 9 to 0.5 m# cmas g/W decreases from 0.16 to 0.10 [4,12]. Ishihara et al [25] and
Mack and Horsch [26] have given an alternative interpretation of the broad low-energy peak at
T = 0 in terms of orbital degrees of freedom in the doubly degenerate eg band. They propose
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that strong correlation, with the constraint of no doubly occupied sites, leads to incoherent
motion of the carriers.

5. The spin-wave spectrum

Quijada et al [20] considered the spin-wave stiffness constantD in the saturated ferromagnetic
state at T = 0 and its relation to optical conductivity. However their derivation of an expression
for D was restricted to the DE model. Here we derive a simple approximate formula for the
spin-wave spectrum of the Holstein-DE model. Our main aim is to calculate D as a function
of electron–phonon coupling strength and to compare with the corresponding behaviour of TC.
In the limit of J → ∞ the local and itinerant spins are locked together as we make the ansatz

|q〉 = (S−
q + σ−

q ) |F 〉 (14)

for the state (unnormalized as yet) with a magnon of wavevector q excited. Here |F 〉 is the
exact ferromagnetic ground state, which we assume to be one of complete spin alignment, and
the spin lowering operators are defined by

S−
q =

∑
i

eiq·Ri S−
i , σ−

q =
∑
i

eiq·Ri σ−
i , (15)

where Ri is the position of lattice site i.
Actually we do not know the state |F 〉 exactly for the Holstein-DE model, unlike the DE

model, but we shall only approximate it at a later stage. The spin-wave energy is given by

ωq = 〈q|H |q〉
〈q | q〉 − E0 (16)

whereE0 is the exact ground state energy, so thatH |F 〉 = E0 |F 〉. By the variational principle,
this is an upper bound on ωq. Using equation (14) it is easy to show that

ωq = 〈q| [H, S−
q + σ−

q ] |F 〉
〈q | q〉 (17)

and 〈q | q〉 = N(2S +n), where S is the magnitude of the localized spin Si . Only the first term
in the Hamiltonian (1) makes a non-zero contribution to the commutator. This one-electron
term may be written as

∑
kσ εknkσ where nkσ is the occupation number for the Bloch state

kσ . A straightforward calculation yields

ωq = 1

N(n + 2S)

∑
k

(εk+q − εk)〈nk↑〉 (18)

where 〈nk↑〉 = 〈F |nk↑ |F 〉. Assuming a simple cubic tight-binding band εk = −t ∑R eik·R,
the sum being over six nearest-neighbour sites, we find

ωq = − t

N(n + 2S)

∑
R

(eiq·R − 1)
∑

k

eik·R〈nk↑〉. (19)

Since 〈nk↑〉 has cubic symmetry in k-space, the k sum in equation (19) is independent
of the particular neighbour R. By including the factor −t it may therefore be written as
(1/6)

∑
k εk〈nk↑〉. Hence

ωq = D

a2

∑
R

(1 − eiq·R) = (2D/a2)(3 − cos qxa − cos qya − cos qza), (20)

where q = (qx, qy, qz) and

D = − a2

6N(n + 2S)

∑
k

εk〈nk↑〉 = − Ka2

6(n + 2S)
. (21)
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Here K is the expectation value of the kinetic energy which appears in the optical sum rule
mentioned in section 4. By expanding equation (20) in powers of q to second order, we find
ωq = Dq2 as that D defined by equation (21) is the spin-wave stiffness constant.

At this stage, with the expectation value 〈nk↑〉 calculated in the exact ground state,
equation (20) is a rigorous upper bound on the magnon energy for arbitrary J and S. This
is no longer the case when we proceed to evaluate it within the many-body CPA. Clearly,
equations (20) and (21) apply equally to the Holstein-DE and the DE model. However, we
shall show that electron–phonon coupling in the former model has a strong influence via 〈nk↑〉.
In the limit J → ∞, equation (21) is equivalent to results derived by Nagaev [27, 28], Kubo
and Ohata [29], Furukawa [8, 30], Wang [31] and Quijada et al [20] for the DE model. The
K defined in the latter paper is one-third of our kinetic energy. Furukawa also derived the
dispersion relation of equation (20) for the DE model. Now

〈nk↑〉 =
∫ µ

−∞
dεAk(ε) (22)

whereAk(ε), given by equation (7), is calculated for the saturated ferromagnetic state at T = 0.
As in deriving σ(ν) we can replace the k sum in equation (21) by an energy integral. Hence,
using the notation AE(ε) introduced in equation (13),

D = − a2

6(n + 2S)

∫ W

−W
dE

∫ µ

−∞
dεEDe(E)AE(ε). (23)

As in the previous section we have approximated the simple cubic density of states by the
elliptic density of states De(E). To match the other calculations in this paper, in particular that
of the optical conductivity, we calculate AE(ε), and hence the double integral in equation (23)
which represents the average kinetic energy K , in the limit S = ∞. However, in the prefactor
in equation (23) we put S = 3/2 as is appropriate for the localized Mn spins. This corresponds
to calculating the Bloch wall stiffness constant (∝D(n + 2S)), which is a static quantity, in
the limit S → ∞ but retaining the essential finiteness of the spin in the dynamical quantity D.
Otherwise we use the same parameters as in previous sections, except that we now take a = 4 Å.
In section 4 we used a = 5 Å, for consistency with our earlier work on conductivity, but 4 Å
is closer to the Mn–Mn distance in the pseudocubic manganites.

In figure 5 we plot the spin-wave stiffness D at T = 0 as a function of electron–phonon
coupling g/W . The reason for the striking decrease of D with g/W , particularly in the range
0.1 < g/W < 0.2 applicable to the manganites, is clear from equation (21). For g/W = 0,
the pure DE model, 〈nk↑〉 = 1 for k within the Fermi surface and 〈nk↑〉 = 0 otherwise. The
negative quantity K is the full non-interacting one-electron energy of the ferromagnetic state
which drives the double-exchange mechanism. For larger g/W , 〈nk↑〉 is more spread out
over the whole zone and |K| decreases. In an extreme limit where electrons are localized
at sites, 〈nk↑〉 is constant throughout the zone and hence D = 0. This behaviour of D in
the Holstein-DE model is very similar to that of TC, as calculated by Green [4]. The main
difference is in the extreme strong-coupling limit where TC becomes very small at g/W ≈ 0.35
whereasD is decreasing quite slowly. The slow decrease ofD is exactly what one expects from
equation (21) and small-polaron theory, where the kinetic energy K ∼ g−2 [32]. TC seems to
be determined more by the width of the narrow polaron band around the Fermi level, which
decreases exponentially with g. Thus one may expect thatD/(kBTC) increases with increasing
g, and thus with decreasing TC. This is found experimentally, as discussed later.

Green and Edwards [6] find that, in the DE model with n = 0.5, TC only increases by
5% when S increases from 3/2 to ∞. A similar insensitivity to S for S � 3/2 is expected in
the Holstein-DE model. Hence, from equation (23), with AE(ε) taken in the S → ∞ limit as
discussed, we have δ = D/(kBTCa

2) ∝ (S + 1
2n)

−1. This is similar to the result δ = 1
2 (s +1)−1



2558 M Hohenadler and D M Edwards

0 0.1 0.2 0.3

g / W

0

50

100

150

200

D
 in

 m
eV

 Å
2

Figure 5. The spin-wave stiffness D versus electron–phonon coupling g in the saturated
ferromagnetic state at T = 0. The plot is for S = J = ∞, W = 1 eV, n = 0.5 and a = 4 Å.

for the spin s nearest neighbour simple cubic Heisenberg model, with TC calculated in mean
field theory. Using values of TC accurate to within about 1% [34] we find an improved
Heisenberg value of δ = 0.286 for s = 3/2, and δ = 0.258 for an interpolated s = 1.75 which
models the spin per site S + 1

2n in the present model. In the present calculations for D/a2,
together with those of Green [4] for TC, we find, for S = 3/2, δ ≈ 0.24 for g/W = 0.1 and
δ ≈ 0.29 for g/W = 0.16. With a = 4 Å these values correspond to D/(kBTC) ≈ 3.9 and
4.6 Å2, respectively. The agreement of these values of δ with the Heisenberg model suggests
that for moderate g/W the ferromagnetic transition in the many-body CPA treatment of the
Holstein-DE model is quite Heisenberg-like. However, this may not be the case for larger
g/W where, as discussed above, δ increases rapidly with g/W .

To compare our theoretical results with experiment we first note that the simple spin-
wave dispersion in equation (20), which is of the Heisenberg form, has been found to fit
data on La0.7Pb0.3MnO3 (TC = 355 K) throughout the Brillouin zone [35]. In this work
the low-temperature stiffness constant D = 134 meV Å2 so that D/(kBTC) = 4.4 Å2. In
LSMO, also with x = 0.3, Martin et al [33] find TC = 378 K and D ≈ 188 meV Å2

(at 27 K) so that D/(kBTC) = 5.8 Å2. Pr0.63Sr0.37MnO3 seems to behave similarly with
TC = 301 K, D = 165 meVÅ2, D/(kBTC) = 6.4 Å2 [36]. Although D/(kBTC) in the
last two materials is larger than in a Heisenberg model, their spin dynamics near TC is quite
conventional [33, 36]. However in some systems with lower TC this is not the case, and
D/(kBTC) is considerably larger. Thus in LCMO, with TC = 250 K, D = 170 meVÅ2,
D/(kBTC) = 7.9 Å2, the ferromagnetic transition seems not to be a standard second-order
one [37]. Also in NSMO, with TC = 198 K, D = 165 meVÅ2, D/(kBTC) = 9.7 Å2, the
spin-wave stiffness constant does not collapse to zero at T = TC [36], just as in LCMO [37].
It is not clear whether such behaviour could occur within the Holstein-DE model or whether
inhomogeneity due to disorder is important. However, the larger values ofD/(kBTC) predicted
by the model for strong electron–phonon coupling suggests that something unusual is going
on. It is worth mentioning that D may be underestimated by the many-body CPA for an
intermediate electron–phonon coupling such as g/W = 0.16 appropriate to LCMO. This is
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because spurious incoherent scattering near the Fermi level reduces the ‘kinetic energy’K , and
hence D. On the other hand equation (21) itself gives an upper bound to D which, in a better
approximation will certainly be reduced. For the DE model, in approximations equivalent to
the random phase approximation (RPA) [20,30,31], this is achieved by an additional negative
term proportional to 9−1 where 9 = JS is the Hartree–Fock exchange splitting between up
and down spin bands. In the presence of an onsite Coulomb interaction U , 9 = JS + Un

so that the negative term is considerably reduced. RPA estimates of D in a two-band model
differ widely [20, 38]. For the one-band model with J = ∞ and S = 3/2 Golosov [39] has
shown thatD is reduced to about half its S = ∞ value, over a wide range of band-filling, when
magnon–electron scattering processes are considered. Further work on D in the Holstein-DE
model is highly desirable.

6. Conclusion

The many-body CPA treatment of the Holstein-DE model has been used to investigate
several spectral properties which may be compared with experimental data on the manganites.
We have been able to supply the theory which was hinted at by Dessau et al [13] in the
discussion of their ARPES measurements on the layered manganite La1.2Sr1.8Mn2O7 in the
low-temperature ferromagnetic state. Broad spectral peaks lie either side of a pseudogap
at the Fermi level and the pseudogap contains polaron subbands with exponentially small
weight. One of these, at the Fermi level, is responsible for the poor metallic behaviour. We
therefore agree with Alexandrov and Bratkovsky [40] that in this system, with unusually strong
electron–phonon coupling, small polarons exist in the ferromagnetic state. However, we find
that small-polaron theory does not apply above or below TC in a pseudocubic manganite
like Nd0.7Sr0.3MnO3 with intermediate coupling strength. In particular the small-polaron
result that the activation energy of the high-temperature dc conductivity is one-quarter of
the peak photon energy in optical conductivity σ(ν) is found not to hold, in agreement with
experiments on NSMO. The observed shift in spectral weight of σ(ν) to lower energy on going
into the ferromagnetic state is found to occur, although it is somewhat suppressed by spurious
incoherent scattering at T = 0 which is a defect of the theory. A rigorous upper bound is
derived for spin-wave energies at T = 0 in the Holstein-DE model. It is shown that the spin-
wave stiffness constant D decreases with increasing electron–phonon coupling strength in a
similar way to TC. However, for strong coupling the ratio D/(kBTC) increases quite rapidly
with increasing coupling strength, i.e. with decreasing TC. This trend is found experimentally.
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